Mark scheme – Uses and Hazards (F)

Question		Answer/Indicative content	Marks	Guidance
1		В √	1 (AO1.1)	
		Total	1	
2		Any one from: supplies of uranium are large enough / will not run out to consider it renewable / AW √ Uranium is not being replaced / used quicker than it is being replaced to consider it non-renewable	1 (AO 2.1)	Examiner's Comments Many candidates incorrectly referred to fusion rather than fission. Candidates are advised to underline key phrases in the question paper before answering the question. Many candidates answered the question in terms of the dangerous waste products or that the waste products could be re-used. Candidates had the opportunity to explain why either of the scientists could be correct in terms of the supplies of uranium being large enough so will not run out and therefore renewable or that the uranium is not being replaced so non-renewable.
		Total	1	
3		Any two from: Keeping a safe distance (from source) √ Use tongs √ Point sources away from people √ Keep sources in sealed containers √ Keep exposure time as short as possible √	2 (AO 2 x 1.2)	ALLOW behind (lead) screen IGNORE gloves/goggles ALLOW lead box Examiner's Comments Many candidates answered this question in general terms suggesting general laboratory rules rather than specific safety precautions relevant to the experiment. A large number of candidates suggested keeping a safe distance from the source. Some candidates were confused about whether the barrier was part of the experiment or a safety device. Higher ability candidates gave relevant precautions including the use of tongs to hold the source (in effect adding some distance), using the sources for a short

					period of time (to minimise exposure) and storing the sources in lead lined boxes.
			Total	2	
4		i	Fossil fuel may run out / is non-renewable / be in short supply / become very costly √ Named damage to environment: Eg (increased) greenhouse gases / global warming / sea levels rise / carbon dioxide / climate change / acid rain √	2 (AO 3.1b) (AO 3.1b)	ALLOW being used faster than being produced / finite resource ALLOW ice caps melting / droughts and storms / more polluting gases / other named polluting gases e.g. SO ₂ / carbon emissions IGNORE just pollution or bad for the environment / more CFCs Examiner's Comments Most candidates recognised that fossil fuels may run out or be in short supply or stating that they are non-renewable. However, fewer candidates went on to give specific scientific reasons for scientists concerns that were creditable. Most candidates gave generalised responses about fossil fuels damaging the environment or causing 'pollution'.
		ï	To meet demand for electricity / not enough energy from renewable resources √ Less named damage to environment: (decreased) greenhouse gases / global warming / sea levels may fall / carbon dioxide / climate change / acid rain / ORA for coal √	2 (AO 1.2) (AO 1.2)	ALLOW will not run out as fast (as coal) / to preserve fossil fuels / produces more energy (per kg than coal) ALLOW less polluting gases / carbon emissions / ice caps melting / droughts and storms IGNORE just less pollution or just better for the environment / less CFCs Examiner's Comments Higher ability candidates said that there were not enough renewable energy resources and nuclear power stations would assist in meeting the demand for electricity, or help in preserving fossil fuels. Answers which gave detail about less damage to the environment were also credited, although a number of candidates thought that nuclear power stations would not cause any potential damage to the environment.
			Total	4	
5	а	i	Nuclei join (in fusion) √	1 (AO 1.1)	ALLOW fuse / combine <u>Examiner's Comments</u> There were many vague answers in terms of hydrogen reacting to produce large amounts of energy. Ideally candidates

				should understand that fusion is where nuclei join together.
				IGNORE heat
				Examiner's Comments
		 Any two from: High temperature √ High pressure √ Large gravitational forces (due to large mass) √ 	2 (AO 2×2.1)	Examiners were keen that correct physics terms were used. Answers such as a lot of heat were not credited. Some candidates
	ii			did mention very high temperatures. Other acceptable answers included high pressure and large gravitational forces. There needed to be some idea of size, e.g. high, large
				Often only one comment was made when the mark bracket was [2] which indicates two points need to be made.
				ALLOW fusion of helium / heavier elements
				Examiner's Comments
	iii	(ultimately) become a white dwarf √	1 (AO 1.1)	The question required candidates to state what would happen when the sun ran out of hydrogen. Many candidates state what would happen to the sun eventually.
				ALLOW answer from diagram if clear
h	i	C√	1 (AO 2.2)	Examiner's Comments
2				A large majority of the candidates correctly identified C as taking the longest time to decay. The common error was A.
				Examiner's Comments
		Any four from: A is more hazardous / B is safer (for most of the time on the graph) √		This type of question gives candidates opportunities to demonstrate their knowledge of radioactivity as well as their skills in interpreting graphical information.
	ii	A has a higher activity (for most of the time) √	4 (AO 4×3.1b)	candidates should look at the information from the graph and discuss what happens initially while B had the higher activity and
		B is more hazardous at the beginning ORA \checkmark		then discuss what happened after the two graphs crossed. There should also be a link
		B has a higher activity at the beginning ORA \checkmark		between activity and hazardousness. For the highest marks, there needed to be a comparison between the relative activity /
		A has a longer half-life / B has a shorter half-life √		during the first day compared to activity / hazardousness of the isotopes after two days.
				Candidates could not gain the same mark

				twice, i.e. A had a longer half-life and B had a shorter half-life would only gain one mark. Again, the physics term "half-life" was expected to be seen.
				Exemplar 4
				scientist. The fact that A has a higher Ochvity whan B is correct as it also has a way of the high activity rate has a way of a way of a way of the than B as it takes more days for the activity to decrease. B has a shore activity than A causing it to perse also have a shore it hauf - life than A
				This candidate makes the link clearly between hazardous and activity and also clearly states on two occasions that A has the longer half-life. The candidate says that A has a higher activity which is assumed as overall. The writing at the end has been ignored and it would seem that the candidate did not fully understand the term half-life. To improve on this answer, some comment should have been made with regard to the graph initially during the first day. This answer was given 3 marks
		Maximum two from: One absorber placed between detector and isotope A √ (Idea of) change absorber and repeat		May be described or drawn in a diagram
	III	experiment √ Measures (background) count with no source√	4 (AO 2×2.2) (AO 2×1.2)	ALLOW stopped / absorbed for drop in count rate
		Maximum two from: Drop in count rate with cardboard indicates alpha √ Drop in count rate with aluminium indicates beta √		Good candidates drew a diagram to indicate the experimental set-up. Many candidates were able to describe how they would place the absorbers in front of the detector. It would be better if they had stated in turn. A few candidates under the procedure section stated that they would take a reading with
		Drop in count rate with lead OR cardboard and aluminium / all materials are penetrated indicates gamma √		no absorber present. A few candidates also stated that would take a reading without a source, i.e. taking a background count.
				which absorber would stop which type of

				radiation.
				Exemplar 5
				isotope
				The scientier should detect how much radiation the isotope has on its am and then place each material (one at a time) between the isotope as and the detector Gamma radiation is the strongest, therefore should pass through eventhing except aluminum. Alpha is the weakest, so it should & be stopped by cardboard. Beto should be stopped by load.
				This candidate has a clear diagram, indicating the piece of material placed between the isotope and the detector. In the text, the candidate clearly states that each of the materials should be placed between the detector and isotope in turn ("one at a time").
				The candidate's understanding of the likely results is muddled and not always correct (gamma radiation stopped by thin aluminium), but the candidate does correctly state that alpha should be stopped by cardboard. This answer was given 3 marks.
				AfL
				Candidates should be able to explain experimental procedures using a labelled diagram.
		Total	13	
6	i	So (most of) the radioactivity / gamma rays are absorbed by the lead/do not get to the doctor. ✓ So the doctor is not irradiated/to prevent the doctor's cells being damaged. ✓	2 (AO2 × 1.1)	ALLOW will absorb alpha and beta radiation
				ALLOW to stop the doctor getting cancer
	ii	Iodine-131 \checkmark Gamma can pass through the body to the detector / alpha cannot pass through the body. \checkmark	3 (AO3.2) (AO2.2)	ALLOW this mark if Cobalt-60 or lodine-131 is chosen

	Total	5	
	Use a short half-life so patient's cells are less damaged. √	(AO2.2)	ALLOW this mark if Radon-222 or lodine- 131 is chosen.